Open Access Research

Biomimetic multi-resolution analysis for robust speaker recognition

Sridhar Krishna Nemala1, Dmitry N Zotkin2, Ramani Duraiswami2 and Mounya Elhilali1*

Author Affiliations

1 Department of Electrical and Computer Engineering, Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA

2 Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA

For all author emails, please log on.

EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:22  doi:10.1186/1687-4722-2012-22

Published: 7 September 2012

Abstract

Humans exhibit a remarkable ability to reliably classify sound sources in the environment even in presence of high levels of noise. In contrast, most engineering systems suffer a drastic drop in performance when speech signals are corrupted with channel or background distortions. Our brains are equipped with elaborate machinery for speech analysis and feature extraction, which hold great lessons for improving the performance of automatic speech processing systems under adverse conditions. The work presented here explores a biologically-motivated multi-resolution speaker information representation obtained by performing an intricate yet computationally-efficient analysis of the information-rich spectro-temporal attributes of the speech signal. We evaluate the proposed features in a speaker verification task performed on NIST SRE 2010 data. The biomimetic approach yields significant robustness in presence of non-stationary noise and reverberation, offering a new framework for deriving reliable features for speaker recognition and speech processing.